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The Inverse Problem for Biaxial Materials
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.&traci — Theory and measurements for the determination of the con-

stitntive parameters of an anisotropic material are described, when a slab of

the material is inserted in a rectangular waveguide. If both < and p tensors

have zero off-diagonal elements (biaxial material), then the six=diagonal

elements can be determined by measuring amplitude and phase of reflec-

tion and transmission coefficients. If the material is nondispersive, two sets

of measurements at two different frequencies are sufficient, under TE ~0
excitation. In tbe more general case of a lossy and dispersive material, two

sets of measurements at the same frequency under TE,0 and TE ~0excita-
tions are needed.An experimental setup for the latter case is described.

I. INTRODUCTION

I N RECENT YEARS, a variety of anisotropic materials

have found increasingly numerous and important appli-

cations at microwave frequencies. Aside from plasmas and

ferrites, which have been studied and used for some time,

new materials include fibers with preferred orientation in

composites certain ceramics, and honeycomb structures.

Among the applications are antenna radomes, substrates

for microstrip antennas and integrated optical devices, and

certain types of radar absorbers.

While the electromagnetic theory of anisotropic materi-

als is well established (see, for example, the book by Kong

[1]), work stiil needs to be done on experimental techniques

for the determination of the constitutive parameters of

these materials. This is a typical inverse problem, in which

we must ascertain firstly what measured data are sufficient

(and preferably also necessary) for the unequivocal de-

termination of the constitutive parameters, and secondly

what experimental setups are preferable to collect the

needed data. The problem is complicated by the fact that,

in general, the material is both 10SSYand dispersive. The

measurements may be performed either in free space, such

as in an anechoic chamber, or inside a waveguide or

resonant cavity.

A general treatment of fields in anisotropic guides was

first given by Bresler [2]. Specific applications to

gyromagnetic materials such as ferrites are found in Kales

[3], Barzilai and Gerosa [4], and in the book by Lax and
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Button [5], among others, while an up-to-date treatment of

gyrotropic guides is provided in the book by Hlawiczka [6].

The case of a guide filled with uniaxial material was first

studied by Kong and Cheng [7]. The problem of a dielec-

tric uniaxial guide has been reexamined recently by Paul

and Shevgaonkar [8], whose work contains a good bibliog-

raphy on this subject. A rectangular guide filled with a

semiconductor in the presence of an external transverse

magnetic field (Hall effect) was studied by Engineer and

Nag [9], who examined in detail the particular case when

the diagonal elements of the complex permittivity tensor

are equal. A guide filled with biaxial material was briefly

studied by Goncharenko [10] who, however, neglected an

important category of possible modes.

In this paper, we consider the inverse problem for an

important category of anisotropic materials: biaxial media,

for which the relative permittivity and permeability tensors

g and p are represented by diagonal matrices in a rectangu-

lar C~tesian reference system (x, y, z )

The six constitutive parameters [1 and p,, (i= 1,2, 3) are

dimensionless numbers and are, in general, complex and

frequency-dependent. We seek their determination from

measurements of reflection and transmission coefficients

for a biaxial sample inserted in a rectangular waveguide,

The boundary-value problem is discussed in Section II,

where it is proven that, contrary to a previous statement

[10], hybrid modes are not needed and, in fact, a single

TE,,,O mode satisfies the boundary conditions. The general

inverse problem is solved in Section HI, and the explicit

determination of the constitutive parameters is effected in

Section IV for a Iossless nondispersive material, and in
Section V for the more practical case of a lossy dispersive

material. For this latter case, a measurement setup involv-

ing a network analyzer and a microwave junction which

allows for the separate, independent excitation of the sam-

ple by either a TEIO or a TEZO mode is described in Section

VI.

11. THE BOUNDARY-VALUE PROBLEM

Consider a metallic rectangular waveguide oriented along

the z axis, with horizontal walls of width a parallel to the x

axis and vertical walls of height b < a parallel to they axis.
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It is shown below that TE~10 modes can exist, when the

guide is filled with biaxial material whose principal axes

coincide with the (x, y, z) axes of the guide.

With time dependence exp ( + jot), Maxwell’s equations

are

v XIJ= juog~, v XE= – jwpopg (2)
—

with g and K given by (l). If k. = O= is the wavenum-

ber in free ~pace, and if ~ and H for a given mode depend

on z via the factor exp ( – yz ), then the transverse field

components are

EX= ‘~
[

dE= dHz
— + jwopz~y dx 1 (3)

y2 + koclpz

HX= ‘1
[

8EZ dHz

y2 + k&.qc2 – jtit0c2 ay + y ax

H,=
–1

[

13EZ 8H=

y2 + k;qp2 joE061 ax ‘Uly -1

(4)

(5)

(6)

and the longitudinal components satisfy the coupled equa-

tions

so that, in general, a hybrid mode is needed. However,

decoupling of E, from Hz occurs in two particular cases.

In the first case

t1p,2 = czp~ (9)

and (7) and (8) become

( 82 az
c1— + 62— +qh

1
2 EZ=O (10)

6’X2 ayz

[

82 a2
—+p2— +p~h

1
2 HZ=O (11)

‘1 ax2 ayz

where

h2 = y2 + k&p2. (12)

The field is a superposition of TE and TM modes; in

general, condition (9) is not satisfied, and therefore we do

not study this case any further.

In the second case, decoupling occurs if either

~=o (13)

401

or

do

Tj= “
(14)

These two possibilities are essentially one and the same,

because we may go from (13) to (14) by a right-angle

rotation of the coordinate system about the z axis. We

consider only (14) which, incidentally, is satisfied by the

dominant TEIO mode in the guide filled with air.

Conditions (13) and (14) were neglected in the analysis
by Goncharenko (10]; therefore, his statement that TM and

TE modes can be supported separately only in uniaxial

media (~1 = cz and PI = p z) is incorrect. In fact, uniaxial

media are a particular case of condition (9).

Under condition (14), (3)–(8) and the boundary condi-

tions yield TM modes with identically zero field compo-

nents, and TE~o modes for which

()
Hz= A.cos ~x e-~m’

\

E = _ ~apop~a
y ()

~v A~sin TX e-~nt=
} (15)

()
~ _ PlymaA sin ?x e-y.z

‘ p~rnr m a

EX=E2=HY=0, (rn=l,2,3, ”)

where

y~=jko~(~p-(~~=jpm. (16)

Note that Y., depends on cz, PI, and P3, and is independent

of cl, 63, and p2. If t2P3 is real positive, then y~ is pure
imaginary at all operating frequencies above the cutoff

frequency

fc=m ‘0 (17)
2aG

where co is the velocity of light in free space.

When the waveguide section 0< z < L is filled with a

sample of the biaxial material, and the incident TE.10 mode

with

()
H; = cos ~ x e“JB”*” (18)

~o~=~k;-(~~ (19)

exists in z <0, it produces a reflected TEH,O mode in z <0

with

()
H;= Rmcc)s ?X eJ/%mz (20)

a

and a transmitted TEmo mode in z > L with

()
H;= T. COS E a x e–J~om(z–~) (21)

where we assume that the termination load at z > L is

matched. The TIE.,O field inside the sample (O < z < L) is

the combination of two fields, such as (15), propagating in

opposite directions. Imposition of the boundary conditions
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at z = O and z = L yields the following expressions for the

reflection coefficient Rm and the transmission coefficient

T*, :

(23)

where

III. THE INVERSE PROBLEM

The inverse problem consists in finding u and ~., from

(22) and (23), when L is given and amplitude and phase of

R., and TM have been measured. Once u and ~m,are known,

the constitutive parameters are found easily.

In general, the parameters El, Pl, and P3 are comPlex,

and therefore & and u are also complex. Adding (22) to

(23) and solving for u

Subtracting (23) from (22) and solving for u

1 R.

~–T~
— –cos&L

~= (26)
jsin~~L “

Now equate (25) to (26), obtaining

T:– R;+l
cos fin, L =

2T~ “
(27)

Let us separate real and imaginary parts in the right-hand

side of (27) by letting

T~–R~+l

2T.
= a’+ ja” (28)

where a’ and a“ are real numbers, known from measure-

ments. Now let

~~ = fi~ - jfi~ (29)

where ~~ and /3~ are real quantities such that

iv,>0, /3; >0. (30)

The second part of (30) implies that the biaxial medium is

lossy (in the case of an active medium, we would have

&’< O, and the discussion would proceed in a manner
similar to the Iossy case). Now (27) yields

and our inverse problem is reduced to finding ~~, and ~g

from the system (31), for given a’ and a“ and under

restrictions (30). Once ~~1is known, u is given by either (25)

or (26).

It is seen from (31) that cos&L has the sign of a’ and,

because of (30), sin ~~1L has the sign of a“

sign (cos&L) = signs’, sign (sin ~~L) = signs”. (32)

Elimination of the hyperbolic functions from (31) yields

1

[
cos2~~L=~=7 a ‘2 + a“2 +1– (a’2 + a“2 +1)2–4a’2 1

(33)

and therefore from (32)

cos/3~L = G signs’, sin ~;L = ~ signs”. (34)

From (34) we have

(35)

where ~~ is known, and O < ~~ L <2 n. Elimination of the

trigonometric functions from (31) and use of (33) yields

sinh ~;;L = ~a’2 + a“2 –,$ (36)

from which /3~ is uniquely determined. Thus, & is de-

termined, aside from the choice of the integer n in (35). If

the length L of the sample is sufficiently small, then n = O;

however, in many practical cases the length L cannot be

arbitrarily chosen; then, n is uniquely determined from

nondispersive media by carrying out measurements at two

different frequencies, as explained in the following section.

If the material is dispersive and the sample is not suffi-

ciently thin, a rough preliminary estimate of the values of

the constitutive parameters still allows us to determine n

for a given L.

IV. LOSSLESS NONDISPERSIVE MATERIAL

If the material of the sample is lossless and nondisper-

sive, the constitutive parameters may be determined by

taking measurements at two different operating frequencies

u and o(l) under the same TEmo mode (in practice, the

dominant TEIO mode).

Let & and u be determined as indicated in the previous

section for frequency co, and let ~~lJ and u(1) be the

corresponding values at frequency u(l). From (24)

whereas from (35) and the lossless properties of the sample

where n is the same integer in both (38), since ~~ ~ ~~1)

and & ~ /3~1 when u ~ o(l). TO determine n, we equate

the ratio of the two equations (37) to the ratio of the two

equations (38), obtaining
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By equating the ratio between (16) and the corre-

sponding equation for ~~1) to the ratio of the two equations

(37), we obtain

and therefore the product c‘ps is known. Now the ratio

P1/PS is obtained from (16)) and the ratio P: /1-Ll from
either of (37); hence, both PI and p3 are known, and cz is

derived from the knowledge of the product t2P3.

In conclusion, if C=, PI, and p3 are real and independent

of frequency, they can be found by measuring R~ and T~

at two different frequencies for the dominant TEIO mode.

By changing the orientation of the sample in the wave-

guide, the other three constitutive parameters are similarly

determined.

V. LossY DISPERSIVE MATERIAL

If the medium is dispersive, measured data at different

frequencies cannot be mixed together, and the only way to

obtain a second, independent measurement of R., and T~

is to excite the guide with a different mode. Thus, we

conduct two separate measurements at the same frequency

o, the first with the TEIO mode yielding R1 and T1, the

second with the TE20 mode yielding R = and Tz. From (16)

and from (24)

& = :Polul, & = gBo2u2

(41)

(42)

where U1,2 are the values of u measured with T’Eilo ~ T1320

excitation, respectively, and

Equating the ratio of (41) to the ratio of (42) and solving

for the product C2P3, we obtain

()~ _4 BOIP1 2

B02P2 ‘n’ 2
c=p~ =

(–)
(44)

()

~_ BOIP1 2 “Ja “

L&l-l,

Equating the first of (41) to the first of (42) and solving

(45)

Fig 1. Sketch of TEIO -TE20 measurement fixture.

If the sample is sufficiently thin, j?lL < 27r. Let us assume

that this is the case, then&= ~1 and from (41)

(46)

NOW pl and p3 are obtained at once from (45) and (46),

then C2 is given by (44). Similar measurements with a

rotated sample yield c1, cs, and p z.

Of course, the method described in this section is appli-

cable also to the simpler case of lossless nondispersive

material considered in Section IV.

VI. MEASUREMENT PROCEDURE

A waveguide fixture that is convenient for exciting TEIO

and TE20 modes has been suggested in the literature [11]

and is shown in a form adaptable for use with modern

network analyzers in Fig. 1. The TEIO mode is excited by

the horizontal arms that are standard waveguides beyond

the tapered transitions. The TE20 mode is excited by the

branch arms that also are standard waveguides. Both modes

can propagate in the central part of the fixture which is of

double-width. Beyond the transition region the horizontal

arms are below cutoff for TE20 modes. With reasonable

precision in fabrication of the fixture, TEIO modes will not

be coupled into the branch arms. Hence, a circuit through

the branch arms can be used to measure reflection and

transmission coefficients due to the TE20 mode, while a

circuit through the side arms can be used to measure

reflection and transmission coefficients for the TEIO mode.

Clearly, impedance matching will be required at the branch

arms and at the tapered transitions.

Equations (27) and (41)-(46) require measurements of

four complex quantities to determine three unknown com-

plex components of the constitutive parameters from each

orientation of the sample. The additional measured quan-
tity greatly simplifies the mathematical steps that are re-

quired to solve the inverse problem. In addition, if three

orientations of the sample are used to determine the six

unknowns, the measurements provide ample redundancies

that aid in immediately evaluating the quality of the mea-

surement.
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VII. DISCUSSION AND CONCLUSION

In the previous analysis, the only point that requires

special care is the determination of the integer n in (35).

However, this value is easily found for nonmagnetic (p,l =

PZ = PS) materials; from (34), j3~ = POMReu, and thus n is
found from (35).

Rather than measuring reflection and transmission coef-

ficients in a guide with a matched load, we may inquire as

to whether measuring the reflection coefficient Rfl, for a

sample backed against a short is sufficient to solve the

inverse problem. The answer is negative, as is seen in the

simple case of a lossless sample with a metal wall at z = L.

Then lfi~ I = 1 and only & carries useful information.

We find that

P18nL ()=BO.Ltan ~/R. . (47)
vi tan bmL

Even in the particular case PI= P3 = 1, the transcendental

equation (47) has an infinite number of solutions for &,

each leading to a different value of ~~ via (16).

We have derived an analytical solution to the inverse

problem of determining the constitutive parameters of a

biaxial material, which may be Iossy and dispersive, from

measurements of reflection and transmission coefficients in

a rectangular waveguide containing a sample of the

material. We have also suggested an experimental setup to

perform the needed measurements.
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Analysis and Design Equations
and Closed-Ring Microstrip

Resonators

VIJAI K. TRIPATHI, MEMBER, IEEE, AND INGO WOLFF, MEMBER, IEEE

Abstract —Simple closed-form expressions for the resonant frequency

and electromagnetic field distribution for various modes of the open- and

closed-ring microstrip resonators are derived by utilizing the perturbation

analysis of the equivalent curved waveguide model. These results are shown

to be in good agreement with the exactly computed vahres obtained by the

snlutiou of the eigenvafue equation for the equivalent waveguide model and

the experimental data. The effect of gap capacitance on the eigenvalues of

the open-ring resonator is atso examined.

I. INTRODUCTION

M ICROSTRIP annular ring resonators have been used

in recent years for various applications including

microwave filters and planar antenna elements [1]–[9]. The

basic properties of these structures, that is, the resonant

frequency and the field distribution for various modes,

have been evaluated by utilizing a number of techniques

including the numerical solution of the eigenvalue problem

associated with the equivalent two-dimensional curved

waveguide model [1]–[9]. Closed-form solutions expressing

Manuscript receivedJuly 15, 1983; revised October 20, 1983.
V. K. Tripathi was on sabbatical leave at the Department of Electrical

Engineering, Duisburg University, Duisburg, West Germany. He is with
the Department of Electrical and Computer Engineering, Oregon State
University, Corvallis, OR 97331.

I. Wolff is with the Department of Electrical Engineering, Duisburg
University, 4100 Duisburg, West Germany.

the resonant frequencies and fields in terms of the geome-

try of the structure (or the corresponding model) are not

yet available for the design of such structures except for

the simplified case where the effect of the curvature is I

totally neglected. In this paper, simple closed-form expres-

sions for the resonant frequencies and the electromagnetic

fields are derived by utilizing the perturbation analysis of

the equivalent curved waveguide [10], [11] with electric and

magnetic walls. The accuracy and range of validity of the

results are also examined together with the effects of small

gap angles on the resonant characteristics of the open-ring

structures.

II. THEORY

The magnetic wall curved waveguide models for the

open- and closed-ring microstrip resonators are shown in

Fig. 1. The model is characterized by its effective dimen-

sions and the medium permittivity which are determined

from the solution of the corresponding microstripline prob-

lem [12], and the inclusion of the effect of curvature on the

model [3], [4]. The model assumes that the substrate height

h is small (h<< A, the wavelength) and, hence, the fields

are constant along the z-direction. The solutions of interest

for fields are then the TM modes with respect to the

0018-9480/84/0400-0405 $01.00 ~1984 IEEE


