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The Inverse Problem for Biaxial Materials
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Abstract —Theory and measurements for the determination of the con-
stitutive parameters of an anisotropic material are described, when a slab of
the material is inserted in a rectangular waveguide. If both ¢ and p tensors
have zero off-diagonal elements (biaxial material), then the six diagonal
elements can be determined by measuring amplitude and phase of reflec-
tion and transmission coefficients. If the material is nondispersive, two sets
of measurements at two different frequencies are sufficient, under TE ;o
excitation. In the more general case of a lossy and dispersive material, two
sets of measurements at the same frequency under TE 4 and TE,, excita-
tions are needed. An experimental setup for the latter case is described.

I. INTRODUCTION

N RECENT YEARS, a variety of anisotropic materials

have found increasingly numerous and important appli-
cations at microwave frequencies. Aside from plasmas and
ferrites, which have been studied and used for some time,
new materials include fibers with preferred orientation in
composites; certain ceramics, and honeycomb structures.
Among the applications are antenna radomes, substrates
for microstrip antennas and integrated optical devices, and
certain types of radar absorbers.

While the electromagnetic theory of anisotropic materi-
als is well established (see, for example, the book by Kong
[1]), work still needs to be done on experimental techniques
for the determination of the constitutive parameters of
these materials. This is a typical inverse problem, in which
we must ascertain firstly what measured data are sufficient
(and preferably also necessary) for the unequivocal de-
termination of the constitutive parameters, and secondly
what experimental setups are preferable to collect the
needed data. The problem is complicated by the fact that,
in general, the material is both lossy and dispersive. The
measurements may be performed either in free space, such
as in an anechoic chamber, or inside a waveguide or
resonant cavity.

A general treatment of fields in anisotropic guides was
first given by Bresler [2]. Specific applications to
gyromagnetic materials such as ferrites are found in Kales
[3], Barzilai and Gerosa [4], and in the book by Lax and
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Button [5], among others, while an up-to-date treatment of
gyrotropic guides is provided in the book by Hlawiczka [6].
The case of a guide filled with uniaxial material was first
studied by Kong and Cheng [7]. The problem of a dielec-
tric uniaxial guide has been reexamined recently by Paul
and Shevgaonkar [§], whose work contains a good bibliog-
raphy on this subject. A rectangular guide filled with a
semiconductor in the presence of an external transverse
magnetic field (Hall effect) was studied by Engineer and
Nag [9], who examined in detail the particular case when
the diagonal elements of the complex permittivity tensor
are equal. A guide filled with biaxial material was briefly
studied by Goncharenko [10] who, however, neglected an
important category of possible modes.

In this paper, we consider the inverse problem for an
important category of anisotropic materials: biaxial media,
for which the relative permittivity and permeability tensors
¢ and p are represented by diagonal matrices in a rectangu-
lar Cartesian reference system (x, »,Zz)

¢ 0 0 g 00
€= 0 ¢ O s M= 0w, O (1)
0 0 e N 0 0 s

Xyz xyz

The six constitutive parameters ¢, and p, (/=1,2,3) are
dimensionless numbers and are, in general, complex and
frequency-dependent. We seek their determination from
measurements of reflection and transmission coefficients
for a biaxial sample inserted in a rectangular waveguide.

The boundary-value problem is discussed in Section II,
where it is proven that, contrary to a previous statement
{10], hybrid modes arc not needed and, in fact, a single
TE,,, mode satisfies the boundary conditions. The general
inverse problem is solved in Section III, and the explicit
determination of the constitutive parameters is effected in
Section IV for a lossless nondispersive material, and in
Section V for the more practical case of a lossy dispersive
material. For this latter case, a measurement setup involv-
ing a network analyzer and a microwave junction which
allows for the separate, independent excitation of the sam-
ple by either a TE,, or a TE,, mode is described in Section
VI

II. THE BOUNDARY-VALUE PROBLEM

Consider a metallic rectangular waveguide oriented along
the z axis, with horizontal walls of width g parallel to the x
axis and vertical walls of height b < a parallel to the y axis.
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It is shown below that TE, , modes can exist, when the
guide is filled with biaxial material whose principal axes
coincide with the (x, y, z) axes of the guide.

With time dependence exp(+ jwt), Maxwell’s equations
are

VX H= jwegE, VXE=— jopopuH

(2)

with ¢ and p given by (1). If ko= wm is the wavenum-
ber in free space, and if E and H for a given mode depend
on z via the factor exp(—yz), then the transverse field
components are

_ -1 8H} 3)
_'Y-2+k(%€1u_z Y ax + jwpol, 3y
-1 0E. 0H, }
= e s 4
Sabvrwrys L MRS (4)
-1 | OF, aH} 5)
=— WE €
x 'Y2+k%‘u162 ] .] 0o+2 a Y ax
-1 JE, BH]
= 0| Jwe,e + 6
y 72+k§€1}‘«2 _J 0~1 a Y ay ( )

and the longitudinal components satisfy the coupled equa-
tions
€ 2 2

1 d _ 9 e
Y2+ kipe, 9y°

E,

v+ ke, ox?
-y 1 3 1 0°H,
joeo \ y2 + ke, Y2+ klpe, ) 9x 9y

(7

Y2+ ke, 0xE Y2+ ke, ay?

#3)H
_ ( 1 1 0’E,
Joto \ y? + k3pe, yz+k§elu2 dxdy

(®)

so that, in general, a hybrid mode is needed. However,
decoupling of E, from H, occurs in two particular cases.
In the first case

€1y = €3y (9)
and (7) and (8) become
82 2 . (
€ +€ +¢,h =0 10
( 1 8)(2 27 a 3 ) )
6-2 2 5
( 182 Nza + psh )H:O ’(11)

where

hr=vy2+ k%ﬁ.“«z-

(12)

The field is a superposition of TE and TM modes; in
general, condition (9) is not satisfied, and therefore we do
not study this case any further.

In the second case, decoupling occurs if either

d

=0 (13)
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or
9
dy

These two possibilities are essentially one and the same,
because we may go from (13) to (14) by a right-angle
rotation of the coordinate system about the z axis. We
consider only (14) which, incidentally, is satisfied by the
dominant TE,, mode in the guide filled with air.

Conditions (13) and (14) were neglected in the analysis
by Goncharenko [10]; therefore, his statement that TM and
TE modes can be supported separately only in uniaxial
media (¢; =€, and p, = p,) is incorrect. In fact, uniaxial
media are a particular case of condition (9).

Under condition (14), (3)-(8) and the boundary condi-
tions yield TM modes with identically zero field compo-
nents, and TE,,, modes for which

x)e_y'"z

il

0. (14)

H, = Amcos(—nﬂ
a

E, =— Z———-—w”OMaAmsin(mx)e‘Vm’
- mw a (15)
HY——ELY’"—A (ln_'”x)e—vmz
X pyma a
EX=EZ=Hy=O, (m=1,2,3,--)
where
2

. My mm .
e o[ e (22 ] = G
Y JKo I 2M3 koa JB ( )

Note that y,, depends on ¢,, u,, and p3, and is independent
of €, €5, and p,. If €, is real positive, then vy, is pure
imaginary at all operating frequencies above the cutoff
frequency

%

— (17
2ayeypu; :

f,=m

where ¢, is the velocity of light in free space.

When the waveguide section 0 <z < L is filled with a
sample of the biaxial material, and the incident TE, , mode
with

H:= cos(%x)e”ﬂ(’m“’ (18)
, (mm\?

Bom = ko—(—a*) (19)
exists in z < 0, it produces a reflected TE,,, mode in z <0
with

= Rmcos(inz;—rx)efﬁ%’ (20)
and a transmitted TE,,, mode in z > L with

H;=Tmcos(—a——x)e_fﬁ°m(z_” (21)

where we assume that the termination load at z> L is
matched. The TE,,, field inside the sample (0 <z < L) is
the combination of two fields, such as (15), propagating in
opposite directions. Imposition of the boundary conditions
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at z=0 and z = L yields the following expressions for the
reflection coefficient R, and the transmission coefficient
T,

m*

1 J 1y .
T =cosB, L+ > (u+ u)sm,BmL (22)
Ro_ _Jf,— 1\
T~ 2(14 u)sm,BmL (23)
where
u= ”%B’"— (24)
:U'3180m

III. THE INVERSE PROBLEM

The inverse problem consists in finding # and B, from
(22) and (23), when L is given and amplitude and phase of
R,, and T,, have been measured. Once u and §,, are known,
the constitutive parameters are found easily.

In general, the parameters ¢,, u;, and u, are complex,
and therefore 8, and v are also complex. Adding (22) to
(23) and solving for u

isin 8, L
U= 1 .]R Bm . (25)
T + T —cosf, L

Subtracting (23) from (22) and solving for u

=

1w —cosp,, L

T, T, 26
" jsinf, L (26)
Now equate (25) to (26), obtaining
T?—R2+1
COs ,BmL = T . (27)

Let us separate real and imaginary parts in the right-hand
side of (27) by letting

T2 -R2+1

27,

m

(28)

where ¢’ and «” are real numbers, known from measure-
ments. Now let

=o'+ jo”

Brn=8,—JB (29)
where §,, and 8,/ are real quantities such that
/>0, 7> 0. (30)

The second part of (30) implies that the biaxial medium is
lossy (in the case of an active medium, we would have

<0, and the discussion would proceed in a manner
similar to the lossy case). Now (27) yields

cosfB, LeoshBL=a’
sin 8, Lsinh 5/L = a”
and our inverse problem is reduced to finding B8, and
from the system (31), for given «’ and «” and under

restrictions (30). Once B, is known, u is given by either (25)
or (26).

(31)
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It is seen from (31) that cos 8, L has the sign of &’ and,
because of (30), sin 8/, L has the sign of a”

sign(cos,B,;L) = sign a’.sign(sin B,;ZL) =signa”. (32)

Elimination of the hyperbolic functions from (31) yields

1
cos*B,L=¢= 2 [a,z +a”? +1- ‘/(“’2 +a”? +1)2~4a/2]

(33)

and therefore from (32)

cos B, L =& signa’,sin B, L =\/1— € signa”. (34)
From (34) we have

Bu=Bi+ 2T n=01,- (%)

where f;, is known, and 0 < f L < 2. Elimination of the
trigonometric functions from (31) and use of (33) yields

sinh /L =\a”” + «”* — ¢

from which B is uniquely determined. Thus, B8, is de-
termined, aside from the choice of the integer » in (35). If
the length L of the sample is sufficiently small, then n = 0,
however, in many practical cases the length L cannot be
arbitrarily chosen; then, » is uniquely determined from
nondispersive media by carrying out measurements at two
different frequencies, as explained in the following section.
If the material is dispersive and the sample is not suffi-
ciently thin, a rough preliminary estimate of the values of
the constitutive parameters still allows us to determine »
for a given L. '

(36)

IV. LossLEsS NONDISPERSIVE MATERIAL

If the material of the sample is lossless and nondisper-
sive, the constitutive parameters may be determined by
taking measurements at two different operating frequencies
w and «® under the same TE,, mode (in practice, the
dominant TE,, mode).

Let 8,, and u be determined as indicated in the previous
section for frequency w, and let AP and u™ be the
corresponding values at frequency . From (24)

(37)

P‘% :”%

— 1) 1 1

IBm— IBOmu* 18r£1)_ B(grrzu( )
Py #y

whereas from (35) and the lossless properties of the sample

= 2an 2an (38)

:Bm=Bm+ T’ Brgzl)zﬁrﬁtl)_*—__L_
where n is the same integer in both (38), since §, — B
and B, — B’ when w — V. To determine n, we equate
the ratio of the two equations (37) to the ratio of the two
equations (38), obtaining

_&n“_ga)_[;
L
nzﬁ' :BOmu (39)
Ay
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By equating the ratio between (16) and the corre-
sponding equation for B8 to the ratio of the two equations
(37), we obtain

R (40)
0a) B utk®
BEEuTRS

and therefore the product €,u, is known. Now the ratio

1, /3 is obtained from (16), and the ratio p3/p, from -

either of (37); hence, both p; and p, are known, and ¢, is
derived from the knowledge of the product €, 5.

In conclusion, if €,, y,, and p, are real and independent
of frequency, they can be found by measuring R, and T,,
at two different frequencies for the dominant TE,, mode.
By changing the orientation of the sample in the wave-
guide, the other three constitutive parameters are similarly
determined.

V. LossYy DISPERSIVE MATERIAL

If the medium is dispersive, measured data at different
frequencies cannot be mixed together, and the only way to
obtain a second, independent measurement of R,, and T,
is to excite the guide with a different mode. Thus, we
conduct two separate measurements at the same frequency
w, the first with the TE,, mode yielding R, and T, the
second with the TE,, mode yielding R, and T,. From (16)

ﬂ1=\/f—§\/k§€2u3—(§)2
Bzz\/zjzvkész“‘(%)z

and from (24)

(41)

13 13
By =By, Br=""Bnu, (42)
My 31

where u, , are the values of u measured with TE,;, TE,,
excitation, respectively, and

k(3 samyfid(7) . @

Equating the ratio of (41) to the ratio of (42) and solving
for the product €, p,, we obtain

_ Bort )2
! 4(:802M2

1— ( Boiy )2
Boatha

(7]

Equating the first of (41) to the first of (42) and solving
- :8()211412 . ( 45)

2
T
k(%leh - (;)

X [E

wta
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SAMPLE INSERTED
AT FLLANGE

Fig 1.

Sketch of TE,,—TE,, measurement fixture.

If the sample is sufficiently thin, 8, L <27. Let us assume
that this is the case, then 8, =, and from (41)

2
w_o_ B »

B3 m\?
kcz)fzﬂa - (;)

Now p, and p, are obtained at once from (45) and (46),
then €, is given by (44). Similar measurements with a
rotated sample yield €, €5, and p,.

Of course, the method described in this section is appli-
cable also to the simpler case of lossless nondispersive
material considered in Section IV.

VL

A waveguide fixture that is convenient for exciting TE,
and TE,, modes has been suggested in the literature [11]
and is shown in a form adaptable for use with modern
network analyzers in Fig. 1. The TE,, mode is excited by
the horizontal arms that are standard waveguides beyond
the tapered transitions. The TE,, mode is excited by the
branch arms that also are standard waveguides. Both modes
can propagate in the central part of the fixture which is of
double-width. Beyond the transition region the horizontal
arms are below cutoff for TE,, modes. With reasonable
precision in fabrication of the fixture, TE;, modes will not
be coupled into the branch arms. Hence, a circuit through
the branch arms can be used to measure reflection and
transmission coefficients due to the TE,, mode, while a
circuit through the side arms can be used to measure
reflection and transmission coefficients for the TE,, mode.
Clearly, impedance matching will be required at the branch
arms and at the tapered transitions.

Equations (27) and (41)-(46) require measurements of
four complex quantities to determine three unknown com-
plex components of the constitutive parameters from each
orientation of the sample. The additional measured quan-
tity greatly simplifics the mathematical steps that are re-
quired to solve the inverse problem. In addition, if three
orientations of the sample are used to determine the six
unknowns, the measurements provide ample redundancies
that aid in immediately evaluating the quality of the mea-
surement.

MEASUREMENT PROCEDURE
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VIIL

In the previous analysis, the only point that requires
special care is the determination of the integer n in (35).
However, this value is easily found for nonmagnetic (p; =
L, = p5) materials; from (34), 8, = B,,, Reu, and thus n is
found from (35).

Rather than measuring reflection and transmission coef-
ficients in a guide with a matched load, we may inquire as
to whether measuring the reflection coefficient R, for a
sample backed against a short is sufficient to solve the
inverse problem. The answer is negative, as is seen in the
simple case of a lossless sample with a metal wall at z = L.

Then IR, |=1 and only /R carries useful information.
We find that

DiscussioN AND CONCLUSION

I“‘lleL ( 1 D )
——2——=p,Ltan| = /R, |.
pitan B, L Pon 2 L"’

Even in the particular case u; = p; =1, the transcendental
equation (47) has an infinite number of solutions for §,,
each leading to a different value of €, via (16).

We have derived an analytical solution to the inverse
problem of determining the constitutive parameters of a
biaxial material, which may be lossy and dispersive, from
measurements of reflection and transmission coefficients in
a rectangular waveguide containing a sample of the
material. We have also suggested an experimental setup to
perform the needed measurements.

(47)
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Perturbation Analysis and Design Equations
for Open- and Closed-Ring Microstrip
‘Resonators

VIJAI K. TRIPATHI, MEMBER, IEEE, AND INGO WOLFF, MEMBER, IEEE

Abstract —Simple closed-form expressions for the resonant frequency
and electromagnetic field distribution for various modes of the open- and
closed-ring microstrip resonators are derived by utilizing the perturbation
analysis of the equivalent curved waveguide model. These results are shown
to be in good agreement with the exactly computed values obtained by the
solution of the eigenvalue equation for the equivalent waveguide model and
the experimental data. The effect of gap capacitance on the eigenvalues of
the open-ring resonator is also examined.

I. INTRODUCTION

ICROSTRIP annular ring resonators have been used

in recent years for various applications including
microwave filters and planar antenna elements [1]-[9]. The
basic properties of these structures, that is, the resonant
frequency and the field distribution for various modes,
have been evaluated by utilizing a number of techniques
including the numerical solution of the eigenvalue problem
associated with the equivalent two-dimensional curved
waveguide model [1]-[9]. Closed-form solutions expressing

Manuscript received July 15, 1983; revised October 20, 1983.
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the resonant frequencies and fields in terms of the geome-
try of the structure (or the corresponding model) are not
yet available for the design of such structures except for .
the. simplified case where the effect of the curvature is
totally neglected. In this paper, simple closed-form expres-
sions for the resonant frequencies and the electromagnetic
fields are derived by utilizing the perturbation analysis of
the equivalent curved waveguide [10], [11] with electric and
magnetic walls. The accuracy and range of validity of the
results are also examined together with the effects of small
gap angles on the resonant characteristics of the open-ring
structures.

II. THEORY

The magnetic wall curved waveguide models for the
open- and closed-ring microstrip resonators are shown in
Fig. 1. The model is characterized by its effective dimen-
sions and the medium permittivity which are determined
from the solution of the corresponding microstripline prob-
lem [12], and the inclusion of the effect of curvature on the
model [3], [4]. The model assumes that the substrate height
h is small (h < A, the wavelength) and, hence, the fields
are constant along the z-direction. The solutions of interest
for fields are then the TM modes with respect to the
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